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SUMMARY

Asphalt pavements make up a large portion (around 95%) of all roadway surface types in Georgia.

These pavements need to be preserved and resurfaced depending on their condition. Among

different categories of pavement distresses, pavement cracks are significant and contribute

hugely in assessing and predicting the life cycle of pavement in a certain project. This research

work deals with automatic classification of Asphalt pavement cracks using convolutional neural

networks.

Different transportation agencies such as the Federal and State departments of transportation

use varying protocols for rating pavement distresses. This is attributed to varying geographical

and climatic conditions across regions in the United States. The Georgia Department of Transport

(GDOT) evaluates pavement distresses based on its protocol, Pavement Condition Evaluation

System (PACES).  An enhanced Computerised Pavement Condition Evaluation System

(COPACES) is currently used to either manually or automatically survey sections of roadways in

Georgia. A few automated or semi-automated pavement crack detection and classification

algorithms have been developed. However, Artificial Intelligence based automated crack

detection and classification techniques haven’t been implemented so far. This can be mainly

attributed to the complicated task of identifying diverse crack patterns and corresponding severity

levels adopted by GDOT and unavailability of sufficient pavement crack datasets.  Therefore, it is

important to note that this research work is possible due to the availability of huge pavement

image dataset. Deep Learning based artificial neural networks have proved to work well on

automatic detection and classification tasks when sufficient data is available. This has been the

primary motivation to implement pavement crack detection and classification using deep learning

techniques.
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Object detection based deep convolutional neural networks are most suitable for this task. Many

such networks like Single Shot Detection (SSD), YOLO, Fast RCNN are current the state of art

for object detection tasks. They have achieved outstanding performance accuracies. Faster

RCNN is one among these networks that has consistently performed well on difficult object

identification problems and has achieved high performance accuracies on PASCAL VOC and MS

COCO datasets. We implement pavement crack detection and classification using the Faster

RCNN network model.  A pre-processed image dataset is used for training the network to detect

and classify pavement cracks. The network achieves a mean average precision of 0.56 in

identifying complicated preliminary definitions of pavement crack categories incorporated in

accordance with crack types and severity levels defined in PACES. Since different cracks

categories appear to be very similar with a few distinguishing features, the Faster RCNN network

is trained to identify only those features which are characteristic of a certain category as

preliminary detections. These detections are further post processed to develop a complete

method to automatically classify cracks according to GDOT’s distress classification standards.

This proposed method performs reasonably well and achieves good results in comparison to

visually rated pavement sections and outcomes of a pre-existing crack classification technique

based on the Mutiscale Crack Fundamental Element model.  It can serve as a performance

baseline for other advanced deep learning methods to be developed in the future.
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CHAPTER 1
INTRODUCTION

GDOT surveys and maintains around 18,000-centerline miles of highway apart from county

roadways. Of the total public assets of Georgia, transportation assets make up a whopping 60

percent. The estimated budget needs for the maintenance of highway system from 2011 – 2014

were set at $ 1.3 billion with $135 million available in funding for the maintenance of lump sum

category (Transportation Asset Management, 2011). Therefore, it is important to plan and analyze

the allocation of maintenance funds among different projects depending on the lifecycle estimates

and also by applying “optimization” techniques to achieve a high overall rating post rehabilitation.

As is apparent, to carry out such analyzes, it is important to have accurate roadway survey results.

The current practice of manual survey is tedious and prone to variations due to differences in

analysing a particular distress by Survey Engineers who rate projects across states. In order to

achieve consistent survey results, it is important to automate the task. Currently, automated

pavement crack classification tools are integrated within COPACES. However, these results need

to be re-analyzed and manually checked for any inconsistencies. This research project aims to

use artificial intelligence (AI) based techniques to automatically classify pavement cracks

accurately to reduce any manual quality checks on the surveyed results.

Pavement crack distresses are classified differently by different transportation agencies

depending on varying distress patterns. This variation is due to distinct geographical and climatic

conditions across states as well as varying pavement surface types. Asphaltic pavements make

up more than 95 percent of all roadways in Georgia. The GDOT uses COPACES as its protocol

to classify pavement distress. According to the protocol, Asphalt pavement cracks can be

classified into different types and severity levels as Load cracks (Severity Levels  1 - 4) and Block

cracks (Severity Levels 1 - 3). Load cracks are formed due to the repeated movement of heavy

traffic load on the pavement. They occur along the wheelpath. Block cracks appear in the non-
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wheelpath and spread throughout the pavement. They are caused due to weathering of pavement

or shrinkage of the cement treated base material. They are not confined to the wheelpath.

COPACES derives the definitions of the various types of cracks and their severity from PACES

protocol for pavement preservation. Load cracks are classified into four severity levels depending

on the number of longitudinal cracks and density of the intersecting transverse cracks. Block

cracks are categorized into three severity levels depending on the density of the block patterns

that appear. These are a few characteristics typically representing a certain crack type and

severity. These patterns are efficiently learnt by the neural networks to be able to distinguish

between them. Training the deep learning model with sufficient data improves detection accuracy.

The features that are detected by the model need to be further analyzed using post processing

techniques to identify the type and severity of the crack.

This research develops a complete method to use the detected crack patterns from the image

and output the type, severity and extent for pavement cracks. Crack patterns are detected using

the Faster RCNN model and they are post-processed to match the crack type and severity

definitions in COPACES.

1.1 Proposal Organisation

Chapter 1 outlines the need for the proposed method and briefly mentions the proposed outcome.

Chapter 2 elaborates on the current state of art methods for pavement crack classification. It also

reviews the crack category definitions defined in COPACES. Chapter 3 presents the methodology

for the proposed research work and elaborates on the Deep learning method used for crack

classification. This chapter also outlines the post-processing steps for crack severity and extent

calculations. Chapter 4 presents a discussion of the outcomes. It elaborates on the methods used

for validation and also presents an analysis for validated results. Chapter 5 proposes a

recommended technique as future research work to further improve current results. Chapter 6 is

a conclusion for the proposed method. A few recommendations for future work are also proposed.
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CHAPTER 2. LITERATURE REVIEW

This section first presents the pavement distress evaluation practices with a special focus on

crack type classification, and then reviews the crack detection and classification methods.

2.1 Pavement Condition Evaluation Practices – Crack Type Classification

COPACES defines different pavement distresses and the methods to be followed to identify each

distress type and severity. Cracking distresses are classified into three types and each type is

further categorized into different severity levels. Among the three crack types, load cracking and

block cracking occur frequently across most roadways in Georgia and hence this study focuses

on developing a method to classify them.

a) Crack type and Severity

 Load cracking typically occurs in the wheelpath and is caused by repeated heavy loads.

The cracks are characterized by longitudinal and small intersecting transverse cracks in

the wheelpath. As the severity increases, the number of longitudinal cracks and

intersecting transverse cracks increase. Level 1 load cracking has a single longitudinal

crack bound to the wheelpath with a few intersecting short (0-2ft wide) transverse cracks.

Severity Level 2 includes single or double longitudinal cracks that are wider than cracks

in level 1. These longitudinal cracks have many transverse cracks that intersect. The

number of longitudinal crack bound to the wheelpath increase to 3 or more with many

intersecting transverse cracks forming polygons, as the severity increases. This is

considered as level 3 and is referred to as alligator cracking as the pattern resembles

alligator hide. Severity Level 4 occurs as the pavement condition further deteriorates,

crack width increases and pop-outs are visible. Illustrations for these crack categories is

show in Figure 1. The wheelpath and non-wheelpath designations are shown in Figure 2.
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Figure 1: Crack Severity levels for load cracking. Level 1 (top left) to Level 4 (bottom right)

Figure 2: Designation of the Wheelpath as per Florida Department of Transport

 Block cracking is caused by shrinkage of the base pavement materials. It is not bound

to the wheelpath and occurs across the entire pavement. Block crack level 1 includes
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transverse cracks that are not bound to any single section of the pavement and

longitudinal cracks that occur in the non-wheel path. These longitudinal cracks sometimes

wonder into the wheelpath. Block cracking severity level 2 typically can be identified by

the block patterns that appear. The block pattern occurs across the entire pavement and

the area enclosed by these blocks is large. As the severity increases the crack width and

density of block patterns also increases. However, the area enclosed by the blocks

decreases and a tight crack pattern is visible. This is identified as severity Level 3.

Illustrations for these crack categories is show in Figure 3.

 Reflection cracking is the third category of pavement cracks defined in COPACES. It is

caused when cracks or joints from the underlying PCC pavement reflect on to asphaltic

concrete overlay. Level 1 reflection cracking pattern has straight, tight, transverse lines

that may not extend across the entire pavement or longitudinal cracks if the underlying

concrete pavement is shorter than the overlay.

Figure 3: Crack Severity levels for block cracking. Level 1(top left) to Level 3 (bottom)



www.manaraa.com

6

Severity Level 2 is characterized by all cracks and joints being reflected through the

pavement as the crack progresses. Longitudinal cracks are formed at the edge of the

pavement that are caused by the widening of underlying concrete pavement of the

asphaltic concrete overlay. The cracks are wider than in Level 1. Level 3 reflection

cracking has much wider cracks and visible spalling. The part of the pavement needs to

be resurfaced. Figure 4 is an illustration from COPACES showing all the types of reflection

cracking. This research only focuses on classification of load and block cracking.

Figure 4: Illustration of severity levels of reflection cracking (Level1 to Level 3)

b) Crack Extent

Crack extent usually refers to total crack length. In COPACES it is calculated as a

percentage of the total length of the pavement section with visible cracking. The following

examples illustrate crack extent calculations. The same method is followed for all other

severity levels.

 Load cracking extent

As shown in Figure 5, 150 ft of cracking is seen in the 100 ft sample area. This

accounts for 75% of sample area. Thus, load cracking crack extent is recorded as

75%.
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 Block cracking extent

As shown in Figure 5, 80% of the total sample area shows Level 2 block cracking.

Therefore, block cracking the block cracking extent is recorded as 80%.

Figure 5: Illustration for Load cracking Level  2 and Block cracking Level 3 showing
crack lengths in the sample area

For block cracking severity Level 1, crack extent is the total crack length. If the total crack length

exceeds the sample length, then the crack extent is recorded as 100%

2.1.1 Crack Properties

The different crack categories mentioned above possess specific properties. These properties

can be divided into high-level properties and fundamental properties.

High-level properties: These properties are specific to a certain type of crack and can be used

to distinguish between the two crack types

 Crack location (e.g., wheelpath or non-wheelpath)

 Crack orientation (e.g., transverse or longitudinal)

Fundamental properties: These properties are specific to the severity level. Each crack type

can be further classified into different severity levels based on these properties.

 Load cracking

o Number of longitudinal cracks

o Number of intersecting short transverse cracks

o Number of polygons
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 Block cracking

o Number of blocks

o Area of the block

o Coverage range (wheelpath (WP) and non-wheelpath (non-WP) )

Crack type and severity level can be determined based on these properties. Table 1 shows the

properties that are specific to each category. These properties are necessary for labelling the

image and will be discussed in detail in the next section.

Table 1 Crack properties for each crack type and severity

Crack
Type

Crack
severity

High Level Properties Fundamental Properties

Location of
occurrence

Orientation
wrt direction
of traverse

#
Longitudinal

cracks

#
Intersecting
transverse
cracks (0-
2ft wide)

# Blocks/
#Polygons

Area
of

block
(m2)

Load
cracking

(LC)

LC1

WP Parallel

1 Few 2 or 3

NALC2 2 >   LC1 3 or 4

LC3 3 or more >   LC2 many

LC4 3 or more >   LC3 Many

Block
cracking

(BC)

BC1
WP & Non

-WP

Perpendicular/
parallel

1 or 0 (non-
WP)

NA NA NA

BC2 NA NA 3 or more >12.5

BC3 4 or more <12.5
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2.2 Review of Automatic Crack Classification Methods

Most of the research work for image-based pavement distress detection has been limited to

identifying distresses and there has been considerably less research devoted to distress

classification. The existing image-based crack classification techniques can be grouped into two

categories as image processing based techniques and machine learning methods. This review

discusses the important machine learning methods implemented for crack classification,

performance accuracies achieved, and also the types of crack categories considered for

classification. Crack feature detection is an important step for crack classification. However,

pavement cracks occupy only a small portion of the image and the major portion is the background

that increases image noise and complicates the task of detection and classification. Therefore,

most research work first deals with de-noising the image which is followed by implementing

different feature extraction techniques. Research based on crack classification is mainly focussed

on classifying primitive categories like longitudinal, transverse and alligator crack patterns.

Cubero-Fernandez A (2017) have used the decision tree C4.5 algorithm to classify these cracks.

In order to enhance the range of the darker pixels belonging to cracks, logarithmic operations are

performed on the grayscale pavement images. Bilateral filters and Gaussian filters are used to

increase the contrast and smoothen the image. This is followed by using canny edge detection to

detect the crack patterns. These detected crack patterns in the images are used to obtain

projection integrals which are numerical inputs for classification using the decision tree algorithm.

This method achieves close to 80% accuracy in classifying crack categories. In another study by

Henrique Oliveira et al (2013), clustering algorithms such as k-means method and one class

classification strategies like minimum covariance determinant Gaussian (MCDG) classifier are

used to detect patches of images that contain cracks. Standard deviations of the pixel values

along the rows and column pixels of the detected connected crack components are used as

features to further classify the cracks as outlined in the Portuguese distress protocol. This method
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has a few false positive detections in terms of detecting ravelling distresses that are less than

2mm wide but appear similar to cracks. Nhat-Duc Hoang et al (2018) implement laplacian pyramid

based image processing techniques for feature extraction. Projection integrals of these images

are used as inputs to the Least square Support vector machine (LSSVM) that is tuned using

Differential Pollination Algorithm (DFP). This combination of LSSVM and DFP achieves a high,

93.4% classification accuracy. Automatic Pavement Crack Detection and Classification Using

Multiscale Feature Attention Network which consists of the Multiscale Dilated attention module

(MDA) and Feature Fusion Upsampling (FFU) module was proposed by Weidong Song et al

(2019). The MDA module is used to obtain high-level features from the image which are further

upsampled to match the input feature resolution using the FFU module. The different crack

objects detected are fitted with a minimum enclosing rectangle (MER). The cracks are categorized

into different types and severity levels based on the properties obtained by different MER such

as the angle, distance between them and length of the diagonal etc. This method performed well

with an overall classification accuracy of 91%.

Artificial neural networks simplify the task of crack classification by automatically extracting

features from the images. However, most classification tasks are limited to categorising cracks

based on their type and very few works incorporate severity classification. Few works like Li

Baoxian et al (2018) and Kaseko (1993) have achieved classification of cracks belonging to four

different categories, longitudinal, transverse, block and alligator types. Former uses four

convolutional neural networks with different sizes of receptive fields. These networks are trained

using patches of images and achieve a good classification accuracy of 94%.  The latter research

work is one of the earliest studies classifying cracks using Multilayer Feedforward network (MLF).

This work first carries out image segmentation by automatically selecting the threshold value

obtained from training a MLF network. The input to the network include features obtained from

the grayscale image histograms such as the global mean and standard deviations for each pixel.
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Another MLF network is used to classify the cracks using properties of segmented crack objects

such as the variance, mean number of uninterrupted sequence of object pixels and projected

crack length in a certain direction. Anisotropy which is a measure of the probability of a certain

pixel being a crack or non-crack depending on the features in a certain orientation is used by Tien

Sy Nguyen (2009) to identify crack pixels in the images. These detected crack pixel features are

then used as input to the multilayer perceptron network to classify cracks belonging to different

categories. N.A.Yusof et al (2018) make use of two deep convolutional neural networks to detect

and classify cracks. First stage is used for crack detection and segmentation which is followed by

the second stage for crack classification. However, cracks are only classified as longitudinal and

transverse. In another recent study by Ronald Roberts et al (2020) several road distresses such

as cracking, visco-plastic distresses such as rutting and other distresses such as potholes are

classified using object detection based convolutional neural networks like Faster RCNN and

Single Shot Detection (SSD) using Inception v2 and MobileNet. Cracking distresses were divided

into two categories based on area of cracking. This method achieved an overall accuracy of 90%;

however, the categories of cracks considered based on type and severity were limited.

Another research work developed by Tsai, et al (2014) implements a multi-scale crack analysis

method based on Crack fundamental element. Multiscale Crack Fundamental Element (CFE)

model, is used as a basis to extract mutliscale crack properties which further assist in classifying

cracks based on their type and severity. A CFE is defined by clustering cracks based on their

proximity using a bounding box. These clusters are further expanded to obtain different crack

properties which are mutliscale and represent topological properties of the crack. These

properties are divided into three scales namely, fundamental properties, aggregated properties

and CFE geometrical properties as shown in the figure 6. The method expands from calculating

the fundamental crack properties which are specific to a single crack segment (e.g., crack length),

to aggregated crack properties which represent the interactions between cracks with each CFE
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(e.g., Crack intersections) to the final step of calculating clustered CFE properties which focus on

the overall crack itself (e.g., CFE orientation). In this way, the model manages to capture all types

of properties that can be useful to analyze and classify pavement cracks.

Figure 6: Mutiscale crack properties, Tsai et al, (2014)

These crack properties are intuitively related to the crack type and severity definitions in

COPACES. However, directly correlating them to a particular crack category is a complex task.

Hence a machine learning technique (Ordered Logistic Regression) combined with heuristic rules

is used to automatically classify cracks. This method achieves an overall classification accuracy

of 92.2% and 98.1% for load cracking and block cracking respectively. This method is used as a

baseline to develop the object detection based crack classification technique. It also serves as a

benchmark to validate results.
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From this literature review it is clear that deep learning networks have not been used to classify

complex crack structures which represent different crack types and severity levels outlined in

COPACES and there is a need to further research and develop novel techniques that can achieve

this. Therefore, the objectives of this study is to propose a method that aims to classify these

cracks directly using object detection based convolutional neural networks and analyze the

performance which in turn addresses the need.
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CHAPTER 3

An Automatic crack classification technique using Convolutional Neural

Network and Post-processing techniques

Automatic crack detection and classification is a complicated process because multiple crack

properties need to be considered. Therefore, the method proposed for crack classification

leverages the robustness of object detection based convolutional neural networks to identify

multiple crack properties and applies certain geometrical principles to post-process the obtained

detection results to arrive at the final expected outcome. These geometrical principles serve as

post-processing techniques to the ML based detection results.

The proposed methodology is composed of

1. Object detection based Crack Classification technique

a) Step 1 – Data Preparation

b) Step 2 – CNN Model Selection

c) Step 3 – Training and Testing

2. Post-processing techniques

a) Step 4 - Method for crack type and severity classification

b) Step 5 - Method for crack extent classification

This chapter provides a detailed description of the steps for object detection based crack

classification technique using convolutional neural networks. It also deals with post-processing

techniques used for crack classification.
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Figure 7: A flow chart presenting the components/steps followed for the proposed
method and their relationship.

3.1Step 1: Data preparation

Convolutional neural networks require huge, diverse datasets in order to produce accurate

results. 3D pavement data captured by the GT Sensing Vehicle is processed to obtain 3D

Range images. LCMS software outputs an image that corresponds to a resolution of 4mm.

The original image size is 1040x1250. LCMS software also records the location of the lane

marking for every image. As joints are present at the edges of the lane, images are cropped

as shown in Figure 8 to exclude the joints as they appear similar to cracks and can result in

false positive detections. These images are annotated to create ground truth.

Figure 8: Illustration of the original image and pre-processed image
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3.1.1 Annotation Method

Annotations for Faster RCNN model are created using a labelling tool, LabelImg shown in Figure

9. Bounding box type annotations are created by drawing on the image and also specifying the

class label. LabelImg saves these annotations as XML files using the PASCAL VOC format.

Figure 9: Illustration of the labelling tool used for creating annotations

A single section of the pavement can have multiple combinations of cracks belonging to different

types and severity levels. This complicates the process of crack classification. Current GDOT

standards require reporting all crack types, severity levels and extent. Different categories

considered for annotation are:

Load Cracking – Severity Level 1 (LC1), Severity Level 2 (LC2), Severity Level 3 (LC3) and

Severity Level 4 (LC4)

Block Cracking – Severity Level 1 (BC1), Severity Level 2 (BC2) and Severity Level 3 (BC3)

Convolutional neural networks can distinguish between different categories of objects by

extracting unique features specific to a certain category. As defined in the literature review
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section, cracks are categorized into different types based on the location of occurrence. It is a

task complicated task for neural networks to distinguish between different types based on the

location of occurrence. This is due to the absence of any reference that is unique to a certain

category in the background that can help differentiate between different sections of the pavement

i.e, Wheelpath (WP) and Non-Wheelpath (Non-WP). Hence different categories considered for

annotation are based on identifying unique features. To accommodate these features, crack

definitions are slightly changed from those defined in COPACES.

1. Load Cracking: Different from COPACES, all longitudinal cracks irrespective of the

location of occurrence or whether it is forming a block pattern are defined as load cracking

with different severity levels. This is done because all longitudinal cracks in both WP and

Non-WP or even when they are part of block patterns appear to be similar. Hence the

model cannot distinguish between them.

a. LC1/BC1: This category is defined to include all single longitudinal cracks that

appear in the image. The image shown below shows all single longitudinal cracks

annotated with a label LC1/BC1. Further to distinguish between Level 1 and Level

2, number of polygons formed is an important distinguishing feature. A longitudinal

crack having 2 to 3 small polygons is also considered as LC1/BC1 (red).

b. LC2: Cracks belonging to this category have more than 3 small polygons or 2 to 3

large polygons appearing along single or double longitudinal cracks. The image

below shows an annotated example belonging to this category and is labelled as

LC2 in yellow.

c. LC3: This category includes 3 or more longitudinal cracks forming many polygons.

This pattern resembles that of the alligator hide. This crack usually occurs across

the entire 5m wheelpath section parallel to the direction of traverse. The image

below shows the annotated LC3 category in dark blue
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d. LC4: Pavement pop out caused by severe load cracking and aggregate loss is a

unique feature of this category. These areas of the pavement appear dark in the

images due to the loss of pavement material causing less light to reflect. The image

shows the annotated LC4 category in green.

2. Block cracking:

a. BC1: Different from COPACES, this category of annotations includes only

transverse cracks that are wider than 2ft since all longitudinal cracks are annotated

as load cracking as previously mentioned. These transverse cracks can occur

either independently across the pavement or they may be intersecting longitudinal

cracks. The image below shows these annotated transverse cracks as BC1 (light

blue)

b. BC2/BC3: All the block patterns formed in the image are labelled as BC2/BC3. As

defined in COPACES, both BC2 and BC3 have block patterns appearing across

the entire roadway. Therefore, the task of detecting these categories can be

simplified by detecting the block patterns. With the detected block patterns from

the model, the classification of BC2 and BC3 is done using the post-processing

steps. The image shows the annotated blocks in white with labels as BC2/BC3.

An image can contain combinations of crack categories. Therefore, each image is carefully

annotated. All crack combinations in each wheelpath are labelled separately because the patterns

are different for different severity levels as mentioned above. Hence the model is trained to identify

these specific patterns. For this particular example in Figure 11, a part of the crack in the left

wheelpath is labelled as LC3 (dark blue) and bottom part as LC2 (yellow). On the right Wheelpath,

both LC2 and LC1/BC1 (red) categories are annotated. All transverse cracks are annotated as

BC1 (light blue).
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Figure 10: Annotated crack categories

Note that even when the crack in a single wheelpath has consistent severity level, it is labelled as

two separate bounding box if the length exceeds a certain minimum threshold (visually decided –

crack length is at least half the image length) as shown in Figure 11. This is because the model

learns to detect similar number of categories in each wheelpath as it is trained to detect.

Therefore, by annotating each wheelpath with two bounding boxes, the model learns to split the

detections in each wheelpath. This also helps reduce the number of duplicate detections due to
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inconsistent annotations i.e, labelling a few images with one bounding box in the wheelpath and

a few other images with two.

Figure 11: Annotation method

1000 pavement images were used for training the model. The annotation count per category is

shown in table 2

Table 2 Annotation count per category

Crack

category

Training Testing

LC1/BC1 1704 155

LC2 501 79

LC3 259 97

LC4 40 4

BC1 2937 231

BC2/BC3 425 62
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3.2 Step 2: CNN - Model Selection

Convolutional Neural Networks (CNN) are a class of deep learning algorithms which take 2D

images as inputs. They represent deep neural networks with different layers performing different

operations. The convolutional layer performs a convolution operation between the learned filter

weights and the input image. This helps reduce the size of the input while preserving important

high dimensional features. The output of each convolutional layer is a feature map. The pooling

operations such as max-pooling, L2 pooling also help in reducing the dimension of the feature

map. This is done by down-sampling the input feature map. This operation helps to create location

invariant features. A number of convolutional and pooling layers are stacked together and the

output is fed to a fully connected layer which consists of a non-linear activation function that fine

tunes the input to adjust the output as required for classification. This entire network is trained

and optimised for different classification tasks.

Applications of Object detection according to Zhong-Qiu Zhao et al., (2019) can be divided

classified as follows

 Generic Object detection – which is based on detection and classification using

bounding box regression

 Salient Object detection - which deals with pixel level segmentation

Generic Object detection can be further classified based on the type of framework used for

detection and classification as follows

 Region Proposal based framework

 Regression and Classification framework

The Region proposal based framework typically starts by selecting regions of interest in an image.

This is done either using methods such as selective search, Edge box or using CNNs as in case

of Faster RCNN. The generated region proposals act as inputs to the Convolutional Neural
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Networks which further extract high dimensional features. These features are used to train the

network for object classification and localization where each object in the image is classified into

separate categories and are fitted with a bounding box.

Faster RCNN model which was proposed by R. Girshick et al., (2015) was chosen for this generic

object detection task of detecting different crack types in an image. Faster RCNN has proven to

achieve high classification accuracies for complex classification problems. This section

elaborates on the functional mechanism and model structure for Faster RCNN. The model

consists of two modules that share a set of convolutional networks. This helps increase the

computational speed. The first module is the region proposal network (RPN). This network takes

as input the convolutional feature map generated by the last convolutional layer of the shared

network and generates region proposals by sliding a network over each n x n window of the input

feature map. This sliding network consists of an n x n convolutional layer which outputs a lower

dimensional feature map for every window of the input feature map. This network also has two, 1

x 1 convolutional layer that output a set of predicted anchors (with different size and aspect ratios)

and an associated score representing a probability estimate of the object being present or not for

every window. The different scales and aspect ratios of an anchor makes the model scale

invariant. This helps reduce the model size and also saves computational costs related to

rescaling the proposals for the next layer. The loss function used for the RPN network takes into

account the errors in predicted objectness probabilities and also the predicted bounding box

coordinates. It is trained by back propagation and stochastic gradient descent.
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Figure 12: Illustration of the Faster RCNN model, Girshick et al (2015)

Region proposals from the RPN network are inputs to the Fast R-CNN network which was

developed by R. Girshick, (2015). Fast R-CNN network first generates a feature map for the entire

image and uses the object proposals to extract a fixed length feature vector from the feature map

for the region enclosed by the proposal using an RoI pooling layer. This network consists of 5

max pooling layers and 3-15 convolutional layers. The last fully connected layer is split into two

sibling layers. One of the layers generates class probabilities for each object proposal and the

other outputs the bounding box coordinates for the region proposals. This method makes use of

the stochastic gradient mini batches while training that increase the training speed by sharing the

computations for proposals from the same image. A multitask loss function that takes into account

both predicted class probabilities and locations of the bounding box is proposed for training.

The RPN and Fast R-CNN networks are trained using an alternating optimization approach where

RPN is initially trained to generate region proposals. These proposals are further used to train the

Fast R-CNN network. The weights for the shared convolutional layers are fixed and only the layers

specific to each module are trained and fine-tuned alternately.

3.3 Step 3: Training and Testing

Training and testing was implemented using Google’s object detection API which is an open

source code repository that provides access to different state of art object detection models. To
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train the model, first a Pascal TF Record file that records the labels and bounding box coordinates

for each image was created. This is used as the input to the network. The model was trained on

Google Colaboratory GPU using a learning rate of 0.0001 and batch size of 1. The following

anchor scales were used (0.25, 0.5, 1.0, 2.0) and aspect ratio were set at (0.5, 1.0, 2.0). Adam

Optimizer was used for optimising the network weights. The first and second stage IOU threshold

for the model were selected to be 0.7 and 0.6 respectively.

The trained model was tested using 100 pavement images. In order to reduce overlapping

detections, non-maximum suppression with an IOU threshold of 0.5 and a bounding box score

threshold of 0.4 was used. This technique eliminated many duplicate detections from an initial

300 detected bounding boxes to 10-12 bounding boxes per image. These final detections were

considered for model evaluation by comparing with the ground truth.

To simplify the task of obtaining the final crack types and severity levels using post-processing

techniques, the number of overlapping detections at this stage were further reduced, as shown in

Figure 13, using an Intersection over Area (IOA) threshold of 0.65. This value was chosen by trial

and error to obtain the best detection results.

Figure 13: Illustration of overlapping detections before and after post-processing
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3.4 Post-Processing For ML Results

The second part of the methodology involves post processing the results obtained from the first

part which is detailed in Chapter 3. Post processing is done to determine crack severity and

extent. This is an important step to obtain the final outcome because the crack type and severity

definitions were modified from those defined in COPACES during annotation. The techniques

used for post processing are described in the next section

3.4.1 Step 4: Crack Type and Severity

The detection results are post processed to determine the wheelpath and non-wheelpath crack

type and severity as outlined in COPACES.

The wheelpath, as noted by a GDOT engineer is considered to be approximately 3.25 feet wide.

The entire pavement is divided into 5 zones as shown in the Figure 14. These zones are marked

based on the location of the lane marking. Lane marking locations are recorded by LCMS software

during pavement data acquisition process. Zone 3 which represents the non-wheelpath is

approximately 3 feet wide. However, for the purpose of validating the results with the benchmark

method, similar approximate measurements for wheelpath – 3.00 feet and Non-wheelpath – 3.05

feet are used.

Two of detection results that need to be post-processed include

1. LC1/BC1 - As mentioned in section 1.1.1, during annotation, all longitudinal cracks are

labelled as LC1 irrespective of their location of occurrence. These detections can include

longitudinal cracks in the non-wheelpath which could be independent cracks that need to

be post – processed to BC1 or they can be part of the block pattern in which case they

need to be deleted. This is done as follows:

a. LC1/BC1 detections in the Non-wheelpath which are not part of the block pattern

are detected by checking the region of overlap between the detected bounding box
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and the non-wheelpath using an IOA threshold of 0.8 If the detection, has an IOA

value greater than the threshold, the category label for that particular detection is

changed to BC1

b. LC1/BC1 that are part of the block pattern – Since all longitudinal cracks are

labelled as LC1/BC1 for training the model, the model will also detect longitudinal

cracks that are part of a block pattern as LC1/BC1. The location of wheelpath is

also used to decide whether to remove these detections. If the longitudinal crack

forming a block pattern is in non-WP, then this detection (bounding box) is

removed. On the other hand, if the longitudinal crack is in the WP, then the

LC1/BC1 detection (bounding box) of this longitudinal crack is kept. This is done

by checking if there is overlap between the detected bounding box for LC1/BC1

and BC2/BC3 categories using an IOA threshold of 0.4 If there is overlap, then this

bounding box is removed.

2. BC2/BC3 – This category includes detected blocks on the pavement which are typically

part of BC2 or BC3 as mentioned in COPACES. The individual blocks are annotated as

BC2/BC3. In order to determine the level of severity, these detections have to be post

processed to check if they map to either BC2 or BC3 category as outlined in COPACES.

The steps followed to post process these detections are as shown in the flowchart in

Figure 15. The important features of these detections that are taken into account for

classifying them are:

a. Number of detected BC2 bounding boxes

b. Area of each detected bounding box

c. Coverage range and the location (whether it is in WP or not) of the detected

bounding box



www.manaraa.com

27

Figure 14: Representation of WP and Non-WP sections

Figure 15: Flowchart of post-processing steps to categorise LC/BC1 and BC2/BC3
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3.4.2 Step 5: Crack Extent

GDOT calculates the extent of the crack based on the longitudinal length for load cracking and

total crack length for block cracking. This extent is calculated as a percentage of the pavement

section considered for survey. Based on the extent of cracking for each severity level, deduct

values are obtained for the surveyed section. The following post-processing technique to calculate

crack extents gives an approximate value. The extent calculations for each crack type are as

follows

a) Load cracking – For each wheelpath, load cracking extent is an approximate value

obtained by measuring the lengths of the detected bounding boxes as shown in Figure

16. Overlapping lengths are deducted to get an approximate total crack extent. This is not

an accurate value because the detected boxes do not accurately span the entire crack

length.

RWP extent (LC3) = b1 + b2 – b3 > 1180 pixels = 5000 mm

This value can be converted into percentage extent as required by GDOT by taking the

ratio with respect to the entire wheelpath length.

b) Block cracking – BC1 extent is calculated by measuring either the breadth or length of

the detected bounding box based on the orientation of the bounding box as shown in

Figure 16. BC2/BC3 extents are approximate values got by summing the perimeter of

each detected block pattern. This method only gives an approximate value because the

crack classification algorithm does not need to detect every crack present on the

pavement to determine the severity of block cracking. Therefore, many small cracks are

not included in these extent calculations.

BC1 Extent: a1 + a2 = 368.02 pixels * 4 = 1472.08 mm
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Figure 16: Example showing extent calculations
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CHAPTER 4. VALIDATION

The first section of this chapter presents validation of the results obtained from the first part of the

proposed method i.e., Object detection based crack classification. The second section focuses

on validation of the final outcomes obtained from the post-processing detection results.

4.1 Validation for ML based crack classification technique

This section elaborates on the dataset and metrics used for validation of Object detection based

classification technique. It also presents a discussion for the obtained results.

4.1.1 Dataset and Metrics

For the validation of the trained Faster RCNN model, a test set containing all categories of cracks

was used. This dataset contained 100 images with per category annotation count as shown in

table 2 in section 1.1.1 The images for train and test sets were chosen separately from the

collected pavement image set to include different images with no duplicate images. Annotations

were created using the same technique that was adopted to create ground truth data for model

training. The model was tested using the trained network weights. The performance was the best

for weights obtained from training the model for around 35000-40000 epochs.

The metrics used to validate the model performance were based on the same metrics that have

been used for the PASCAL VOC challenge i.e., Average precision and Recall. These metrics are

also the most popular for validation of object detection based models. Precision is related to the

models prediction accuracy.

= +
Recall is a measure used to determine how well the model performs in detecting all true positives.
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= +
Average precision is calculated as the average of precision values over recall values ranging from

0 to 1. This basically represents the area under the Precision-Recall curve. The IOU threshold

used for detection was set to 0.5.

4.1.2 Validation Results

The model was able to achieve a mean average precision of 0.568 with the average precision

and recall values for every category as shown in Table 3.

Table 3: Detection Results

Crack category Average precision

@ 0.5 IOU

Recall

LC1 0.375 0.580

LC2 0.478 0.658

LC3 0.548 0.742

LC4 0.892 1.00

BC1 0.626 0.714

BC2 0.461 0.50

The major issue for low scores related to LC categories was due to overlapping detections as

shown in Figure 17. This resulted in a number of false positive detections. These overlapping

detections are mostly due to the splitting the annotations for each wheelpath to consider multiple
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combinations of existing crack severity levels. These detections were treated as false positives

as the metric considered for evaluation treated only a single matching detection as true positive

and all overlapping detections as false positives. Methods that were used to eliminate overlapping

detections depending on their confidence score or IOA value did not work because it was difficult

to automatically determine which of the detections have to be removed in each wheelpath. The

previous statement notes this task as difficult because a few false positives were detected with a

high confidence value. The low recall values for the LC1 and LC2 categories is related to the

model not being able to distinguish between them because they share similar crack patterns.

There were a few cases where LC4 was detected as LC3 as illustrated in Figure 18. Overall the

model performed well in identifying LC4 cracks.

Figure 17: Illustration of crack detections (left) and labels (right)

The model wasn’t able to detect all transverse cracks (BC1) which resulted in a low score. This

is because to the model fails to detect many short transverse (3ft) cracks. However, all

transverse cracks that are wide enough (4-5ft) were detected accurately. There were a few
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cases wherein the model falsely detected transverse cracks which were part of BC2/BC3

category as seen in Figure 19. This justifies the low recall value. Performance for BC2/BC3

category is low in part because the model fails to detect small block patterns and also patterns

that are not clearly visible as shown in figure 19.

Figure 18: Illustration of false LC1(top left WP) and LC3 (right WP) detections.

Figure 19: Illustration of missing BC2/BC3 detections (circled) in the first image and false
positive BC1 detections in second image
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4.2 Validation for post-processed results

This section elaborates on the dataset and methods used for validating the final outcomes

obtained from the post-processed detection results. It also discusses the performance of the

proposed method by analysing the validation results for a few images.

4.2.1 Baselines for validation

Traditionally, Pavement Engineers from GDOT have been visually surveying pavement sections

and recording this data using a computerised pavement condition evaluation system. These

ratings are done for a single survey section (a mile or partial mile) that is considered as a

representative for the entire segment that is being rated. These visually classified results based

on the crack definitions outlined in COPACES serve as ground truth for validating the results

obtained from this method. With the help of an Engineer from GDOT, several complicated cases

for pavement cracking images have been resolved and a consistent method is followed for

classifying cracks.

Another method that is considered for validation is a research work implemented by Tsai, et al

(2014) that has been reviewed in section 1.1.2. This method serves as a baseline for the current

object detection based crack classification technique and hence is used as a second method for

validating the results.

4.2.2 Validation Results

A set of 10 images consisting of all crack types and severity levels were used for validation using

the two techniques mentioned above. A few of the results are shown below in table 4. Figure 20

shows the images used for validation. For the purpose of visual validation, pavement markings

along with the Right wheelpath (RWP), Left wheelpath (LWP) and Non-WP sections are drawn

for the ease of making better decision. These methods record the crack category and extent

values (mm) for each wheelpath (Load cracking) and Non-WP (block cracking).
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The object detection based crack classification technique is able to achieve good classification

outcomes that match the visual detection results. However, the accuracy of classification mainly

depends on the detection and classification results from the Faster RCNN model. In all the below

mentioned cases the model classification results were accurate. This confirms that the post

processing techniques used to detect the crack category and extent worked.

Figure 20: Images used for validation

In the first image in Figure 20, all the results from the three methods classify the crack as BC1.

However, the drawback of the proposed technique is that the extent calculations only give an
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approximate value of the crack extent because as seen in the detection result in Figure 21, the

width of the bounding box is not equal to the crack length. Another instance of BC1 where the

longitudinal cracks appears in the wheelpath is shown in Figure 20, second image (top). Post

processing technique used to differentiate between wheelpath and non-wheelpath cracks works

well and is able to differentiate between these cracks as seen in the second illustration in Figure

21.

Figure 21: Detection results for validation images
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There is a difference in the crack category result in the fifth image (mid bottom) in Figure 15,

where the Multiscale CFE method based classification technique classifies the crack in the left

WP as LC1 whereas the actual crack category is LC2. This shows that the proposed algorithm

performs well even when the cracks are formed at the edge of the WP.

Table 4: Validation results

Multiscale CFE based
crack classification

algorithm

Object Detection based
Convolutional Neural

Network

Visual detection

Image LWP RWP Non-WP LWP RWP Non-WP LWP RWP Non-
WP

1 Level 0 0 1 0 0 1 0 0 1

Extent 0 0 2833.20 0 0 1882.97 0 0 -

2 Level 0 0 1 0 0 1 0 0 1

Extent 0 0 6142.16 0 0 4536 0 0 -

3 Level 0 1 1 0 2 3 0 2 3

Extent 0 4944 9967.499 0 3529 26969 0 5000 -

4 Level 1 0 0 1 0 0 1 0 0

Extent 4940 0 0 5000 0 0 5000 0 0

5 Level 1 3 1 2 3 1 2 3 1

Extent 4836 4944 2564.786 5000 5000 1472.08 5000 5000 -

6 Level 0 2 1 0 2 2 0 2 2

Extent 0 4964 6313.95 0 3737 10592.72 0 5000 -
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In the last image (Figure 20), Mutliscale CFE method based crack classification technique

classifies the block cracking category as BC1. However, the visual results match the proposed

method where the image is classified to have BC2. This difference is in part because of the current

updated classification protocol by GDOT which specifies that block cracking exhibits block pattern

and these patterns need to overlap either partially or completely with the non-WP. This is also the

case for difference in results for the third image where block patterns appear across the entire

pavement and hence has been classified as BC3 by the proposed method. These results also

explain the difference in block cracking extent calculations.

These results give an overall idea of the performance of this method. The proposed method

performs well when the detection results are accurate and can easily detect crack category in

certain complicated images where the Mutliscale CFE method based crack classification

technique fails to perform well. However, it fails to give accurate crack extent calculations and

also does not perform well if the detection results from the CNN are not accurate. As an example,

in Figure 22, the crack on the right wheelpath is visually classified as LC4. However, the model

fails to classify accurately and misclassifies the crack as LC3. In few other cases, it becomes

difficult to use post processing techniques to determine which among the overlapping detections

need to be eliminated. As an example in the second image in Figure 22, the left-WP has two

categories of overlapping detections i.e, LC1 and LC2. If the overlapping cracks are eliminated

based on either the confidence score or length of the bounding box, the detection for the upper

portion of the Left-WP would be LC2 which does not match visual detection results.
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Figure 22: Examples showing a misclassified LC4 crack (left) and a complicated case for
eliminating overlapping detections (right)
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CHAPTER 5. Future Research on deep learning method for crack

classification

The proposed method can be considered as a baseline for developing future deep learning

methods for crack classification. A drawback of the proposed method that uses post-processing

steps to categorize the detections is the use of hard-coded thresholds values e.g., number of

block patterns detected, area of the block pattern etc. As crack patterns vary across different

regions, these thresholds may not hold true for all pavement datasets. Post-processing steps also

increase the computational requirements and slow down the process of crack classification. In

order to mitigate these issues partially or completely, the process of crack classification must be

made fully autonomous using deep neural networks to eliminate post-processing. This

recommended method tries to achieve this by automatically classifying the wheelpath and Non-

wheelpath cracks thus, eliminating one of the post-processing steps.

This problem can be formulated as one related to spatial location based classification of 2D

objects in an image. Most research work in this area is based on using probabilistic models to

encode spatial relations between the objects of interest. Southey and Little (2007) developed and

trained a maximum entropy model to learn the qualitative spatial relations between objects that

can be used to classify objects in a scene. In another research work by Haldekar et al (2017)

these spatial relations between objects in an image were used as part of annotations and each

image was annotated based on the context as “To left”, “Inside”, “Below” etc. A Multi-layer

perceptron was trained to predict these spatial relations.

However, a recent work by Islam et al (2020) shows that convolutional neural networks implicitly

encode absolute location information of objects in images. Even though spatial extent of CNN

filters is limited to extracting local features specific to an object, this work provides experimental

proof showing the extracted feature maps, encoding absolute location information. This
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information is of high value for classification and detection tasks that depend on spatial

relationships between different features.

In line with the latter research work, this method recommends enhancing location based

information encoded by CNNs and using this information to automatically classify cracks based

on location of occurrence.

5.1 Data Preparation

The image dataset that will be used for this method consists of similar 3D range images as used

in the proposed method. However, the range images are not cropped and the entire image

including the pavement markings is used to train the Faster RCNN model. As mentioned above,

this method tries to enhance the location related information. This is done by including the

pavement markings in the image. Pavement markings provide reference for locations of the

wheelpath and Non-wheelpath boundaries. Hence they can be treated as reference for the model

to learn spatial distance relations between lane markings and WP/non-WP boundaries. This can

be useful to classify cracks that are region specific i.e, WP cracks (load cracks) and non-WP

cracks (Block cracks)

The 3D images capture approximately 5m longitudinal pavement sections. These sections may

not always include visible lane markings. This is because double lanes have discontinuous lane

markings with gaps of around 10m and bad roadway conditions in certain areas may not have

visible pavement markings. To overcome this issue, a white line which is 10 pixels wide is drawn

on every image as shown in Figure 23. This line is drawn using the lane marking location

information got from the LCMS data and it is slightly offset to align with the center of the lane

marking which is approximately 20 pixels wide.
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Figure 23: Illustration of white lines drawn on lane markings

5.2 Annotation Method

This method aims to reduce post-processing of the detected cracks to determine their actual crack

category. Therefore, annotated crack categories are more aligned to match crack type and

severity definitions outlined in COPACES. The class labels considered for annotation are as

follows

1. Load Cracking: This category of annotations includes longitudinal cracks in the WP and

their definitions match COPACES. Each wheelpath is annotated to include two bounding

boxes based on the severity of the load cracking that is present as shown in method 1.

This category also includes longitudinal cracks that are part of block patterns.

2. Block cracking: This category is different from that in the previous method that was

implemented. It includes 3 types of annotations

a. BC1-1: All transverse cracks that are wider than 2ft are labelled as BC1-1
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b. BC1-2: All longitudinal cracks in the non-wheelpath are labelled as BC1-2.

Longitudinal cracks that are part of block patterns are not annotated. As shown in

the Figure 24, this crack category in the non wheelpath is labelled in pink

c. BC2/BC3: Similar to the previous implemented method, this category includes all

block patterns that appear in an image. These block patterns as mentioned in

section 4.1 are typically part of BC2 and BC3. These detections need to be post-

processed to categorize as either BC2 or BC3 using the same post-processing

technique as discussed in section 4.1 for BC2/BC3 crack detections.

Figure 24: Recommended Annotations for different crack categories
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

Current practices followed by many transportation departments for rating pavements mainly

depend on manual surveys by engineers or make use of semi-automatic methods. The complexity

involved in automatically classifying pavement crack patterns has resulted in less research work

in this area and most of the research has been dedicated to developing automatic crack detection

techniques. State of art research for pavement crack classification using Convolutional neural

networks has been mostly limited to classifying primitive crack categories. This proposed

algorithm is among very few projects using object detection based Convolutional Neural Networks

to classify complex crack categories.

6.1 Conclusions

A Faster RCNN model was trained to detect different crack types and severity levels based on

specific crack properties. The Faster RCNN model was chosen because it has achieved the best

classification accuracies for complex object classification problems. Pavement crack images are

annotated based on GDOT’s crack classification protocol, COPACES. Two methods were

proposed for automatic crack classification and one of these methods has been implemented.

The first method uses crack definitions that are slightly modified from those defined in COPACES

to achieve higher detection accuracy. In doing so it compromises on using rule based post-

processing techniques which depend on hardcoded threshold values to classify cracks as per the

protocol. This method achieves a mean average precision of 0.56. Considering the complexity of

the crack categories, this score is reasonable for crack classification. This algorithm is validated

based on visual survey results and crack classification results obtained from a benchmark model

based on the Multiscale-CFE method.

A second method is proposed for future research to build on this existing algorithm. This method

aims to eliminate post-processing techniques as they make use of fixed threshold values to
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classify different crack categories. These thresholds are not consistent across different pavement

datasets thus, can lead to erroneous results. Making use of pavement marking locations in the

image, this method aims to exploit the ability of CNNs to encode location information for each

crack category and thus, automatically detect WP and Non-WP cracks. Hence this technique

helps automate a part of the crack classification process.

6.2 Recommendations

 There is a need to develop novel Machine learning techniques for crack classification

problems that can achieve better classification results. Therefore, further research work in

this direction is recommended taking into account the time and resources spent annually

on maintaining road systems in USA.

 An algorithm to completely automate pavement crack classification using deep learning

techniques is recommended. The proposed methods make use of post – processing

techniques to classify cracks which are based on using fixed thresholds that may not work

for all pavement datasets.

 Pavement crack classification can work well even without high quality 3D images. Hence

smartphone images that can be easily acquired are recommended for use in future

studies. This also helps reduce the cost associated with acquiring high quality images.

 Developing an algorithm for accurate crack extent measurements depending on the

requirements of the transportation departments is recommended.

 Developing an automatic annotation technique is recommended as manually labelling

images consumes more time.

 Unsupervised learning or Semi-supervised learning algorithms can reduce time and effort

required to annotate thousands of images.
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 Methods to automatically detect joints and other crack-like distresses in an image can

improve the performance of the proposed algorithm by eliminating false positive

detections.

 Crack classification requires accurate pavement marking location information. Therefore,

a method for automatic pavement marking detection is recommended.

6.3 Contributions

 A diverse dataset of 1000 images including all crack categories was annotated using the

labelImg tool. These annotations can be further used for future study for improving the

results

 A post-processing framework to classify cracks according to COPACES was designed

and implemented.

 Code repository for training, testing and post-processing for crack classification is made

available.



www.manaraa.com

47

References

Baoxian Li, Kelvin C. P. Wang, Allen Zhang, Enhui Yang and Guolong Wang , “Automatic
classification of pavement crack using deep convolutional neural network”,
International Journal of Pavement Engineering, 21:4, 457-463, DOI:
10.1080/10298436.2018.1485917

Cubero-Fernandez, F.J. Rodriguez-Lozano, R. Villatoro, J. Olivares,J.M. Palomares, “Efficient
pavement crack detection and classification”, EURASIP2017 (1) (2017) 39

Henrique Oliveira, “Automatic Road Crack Detection and Characterization”, IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp.155–168, 2013

Hiroya Maeda, Yoshihide Sekimoto, Toshikazu Seto, Takehiro Kashiyama, Hiroshi Omata,
“Road Damage Detection Using Deep Neural Networks with Images Captured
Through a Smartphone”, 2018

Mandar Haldekar, Ashwinkumar Ganesan, Tim Oates, “Identifying Spatial Relations in Images
using Convolutional Neural Networks”, (p. 8). Cornell University Library, 2017

Md Amirul Islam, Sen Jia, Neil D. B. Bruce, “How Much Position Information Do Convolutional
Neural Networks Encode?” ICLR 2020

Mohamed S. Kaseko and Stephen G. Ritchie, “A Neural Network-Based Methodology For
Pavement Crack Detection and Classification”, Transpn. Re.s.-C 1, 2755291, 1993

Nhat-Duc Hoang, “Classification of Asphalt Pavement Cracks Using Laplacian Pyramid-
Based Image Processing and a Hybrid Computational Approach”, Comput.
Intelligence Neurosci, 2018

R. Girshick. “Fast R-CNN”, In ICCV, 2015

R. Roberts, G. Giancontieri, L. Inzerillo, G. Di Mino, “Towards low-cost pavement condition
health monitoring and analysis using deep learning”, Appl. Sci. 10 (1), 2020.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN, “Towards real-time object detection
with region proposal networks”. In NIPS, 2015

Tien Sy Nguyen, Manuel Avila, St´ephane Begot, “Automatic Detection and Classification of
Defect on road Pavement using Anisotropy Measure”, n: Proc. European Signal
Processing Conf. (EUSIPCO’09), pp. 617–621, 2009

Tristram Southey and James J. Little, “Learning Qualitative Spatial Relations for Object
Classification”, in IROS 2007 Workshop: From Sensors to Human Spatial
Concepts, 2007



www.manaraa.com

48

Weidong Song, Guohui Jia, Di Jia, and Hong Zhu, “Automatic Pavement Crack
Detection and Classification Using Multiscale Feature Attention Network”, in IEEE
Access PP(99):1-1 · Nov 2019

Yi-Chang (James) Tsai, Chenglong Jiang and Yuchun Huang, “Multiscale Crack Fundamental
Element Model for Real-World Pavement Crack Classification”, American Society
of Civil Engineers, DOI:10.1061/(ASCE)CP.1943-5487.0000271, 2014

Yusof, N.A.,Osman, M.K., Noor, M.H., Ibrahim, A., Tahir, N.M., Yusof, N.M. “Crack detection
and classification in asphalt pavement images using deep convolution neural
network”, In Proceedings of the 8th IEEE International Conference on Control
System, Computing and Engineering, Penang, Malaysia, 23–25 November 2018

Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu., “Object Detection with Deep
Learning: A Review”. arXiv e-prints, page arXiv:1807.05511, Jul 2018


